
 

Stochastic System Analysis and Bayesian Model Updating 

BAYESIAN ANALYSIS: FOREWORDS 

 

 

 Notation 

1. “System” means the real thing and a “model” is an assumed mathematical form 

for the system. 

2. The probability model class M contains the set of the all admissible models and 

the corresponding prior probability distribution over these models. The symbol M 

will be dropped whenever there is no confusion. One should always keep in mind 

that everything is conditioning on M. 

3. X  contains the uncertain model parameters in the assumed model class as well as 

other uncertain variables of interest; x  is a possible value of X ; X̂  is a 

sample of X . 

4. u is the known input to the system; uncertainties in the input should be modeled 

and parameterized by X ; u after the conditioning symbol “|” will be dropped 

whenever there is no confusion. 

5. Y  is the uncertain response of the system and Ŷ  is the observed response from 

the system, i.e. the data. 

6. ( ).f  denotes probability density function; ( ).F  denotes cumulative density 

function; ( ).P  denotes probability. 

7. All variables are vectors, unless particularly specified in the texts. 

8. Cov(.) denotes the covariance matrix of uncertain variables; c.o.v. denotes the 

coefficient of variation. 

9. T denotes known duration and Σ  denotes covariance matrix. 

 

 Probability model class and Bayesian computation 

A probability model class M specifies the prior PDF ( )f x  and the prior 

predictive PDF ( )|f y x . 

Example 1: 

EXY += , where ( ) ( )22,1f x N= ; ( )21,0~ NE  is the uncertain modeling 

error; X E⊥ . It is clear that the prior predictive PDF ( ) 2| ( ,1 )f y x N x= . 

Consider we get a data ˆ 1Y = , the posterior PDF is then 
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Example 2: 

2( , ) 1,.., ~ (2,1 )k kA g X u k T X N= =  

2~ . . . (0,1 )k k k k kY A E E i i d N E X= + ⊥  

Consider we get data 1
ˆ ˆ ˆ{ ,..., }TY Y Y= , 
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Example 3: 
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Consider we get data 1
ˆ ˆ ˆ{ ,..., }TY Y Y= , 
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Example 4: 
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Consider we get data 1
ˆ ˆ ˆ{ ,..., }TY Y Y= , 
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Remarks: 

1. We always know how to evaluate the prior PDF ( )f x  and the predictive prior 

PDF ( )|f y x  (or the likelihood when the data is given) because they are chosen 

by us when we setup the probability model class M. However, we usually don’t 

know how to evaluate the posterior PDF ( )ˆ|f x Y  because there is unknown 

normalizing constant ( )ˆf Y . 

2. The posterior PDF ( )ˆ|f x Y  is usually not the end story for Bayesian analysis. 

Instead, we are usually interested in estimating some function g(X) conditioning 

on the data, i.e. estimate 

( )ˆ ˆ( ) | ( ) ( | )E g X Y g x f x Y dx≡ ∫  

One way of estimating this quantity is to draw N samples from ( )ˆ|f x Y  and 

according to the Law of Large Number: 
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≡ ≈ ∑∫  

Unfortunately, we usually cannot directly draw sample (i.e. using Monte Carlo) 

from ( )ˆ|f x Y . Most of the time, we need stochastic simulation techniques. 

3. When the uncertain variable X  does not change with time (Examples 1 and 2), 

we will solve the Bayesian problems using the block mode; when X  changes 

with time (Example 3), we’ll solve them using the sequential mode. When part of 

X  changes with time and the other part does not, we’ll solve it by combining the 

block mode and sequential mode. 

Block mode: Monte Carlo, rejection sampling, importance sampling, Markov 

chain Monte Carlo (Metropolis-Hastings, Gibbs sampler, hybrid Monte Carlo), 

transitional Markov chain Monte Carlo 

Sequential mode: Kalman filter, RTS smoother, backward sampler, particle filter, 

particle smoother 

 

 Prior PDF selection: 

1. Non-informative prior and Jeffrey’s prior 

When we have no prior information about X , it is desirable to choose a prior 

PDF that does not provide any prior information. Such a prior PDF is called 

non-informative prior. Intuitively, the uniform PDF is non-informative; many 

people choose it for mathematical simplicity. But it can be seen that if X is 

uniformly distributed, exp(X) is not. This contradicts with the intuition that if the 

prior PDF of X is non-informative, that of exp(X) should also be non-informative. 

A better choice of non-informative prior is the Jeffrey’s prior, which is 

proportional to 

( )( )2( ) log |Y xf x E f Y x∝ −∇     

 

2. Conjugate prior 

In some rare cases, the posterior PDF will be of the same type of the prior PDF. 

When this happens, we say that the prior PDF is conjugate to the corresponding 

setting. 

Example 1: 

Y aX E= + , where E  is Gaussian with known mean and covariance matrix; a is 

a known matrix. It can be shown that if X  is also Gaussian with known mean 

and covariance matrix plus ( ),X E  are jointly Gaussian, the posterior PDF 
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( )ˆ|f x Y  is also Gaussian. In fact, Gaussian prior PDF ( )f x  is conjugate to 

linear models with Gaussian uncertainties. 

Example 2: 

Y E= , where ( )~ 0,E N X I⋅  and X  is the uncertain variance parameter. It 

can be shown that if X  is inverse Gamma, the posterior PDF ( )ˆ|f x Y  is also 

inverse Gamma. In fact, inverse Gamma prior PDF ( )f x  is conjugate to 

problems with uncertain variance. 

The choice of conjugate priors is usually motivated by its computational 

simplicity because the posterior PDF can be easily sampled. 

 

3. Maximum entropy prior 

Under moment information about X , we can choose the least-informative prior 

(maximizing the differential entropy) subject to the moment constraints. This prior 

PDF can be found by solving the following optimization problem: 

( )
( ) ( )max log

f
f x f x dx

⋅
− ⋅∫  

subject to ( ) 1=∫ dxxf , ( )1 1( )g x f x dx µ=∫  , ( )2 2( )g x f x dx µ=∫ , … 

( ) ( )0 1 1 2 2( ) ( ) ...* g x g x
f x e

λ λ λ− + + +⇒ =  


